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Advances on CD8+ Treg Cells and Their Potential
in Transplantation
Séverine Bézie, PhD,1,2,3 Ignacio Anegon, MD,1,2,3 and Carole Guillonneau, PhD1,2,3

Abstract: Although cluster of differentiation (CD)8+ regulatory T (Treg) cells have been in the last 20 years more studied since
evidences of their role in tolerance as been demonstrated in transplantation, autoimmune diseases and cancer, their characteris-
tics are still controversial. In this review, wewill focus on recent advances on CD8+ Treg cells and description of a role for CD8+ Treg
cells in tolerance in both solid organ transplantation and graft-versus-host disease and their potential for clinical trials.

(Transplantation 2018;102: 1467–1478)

The Past of CD8+ Regulatory T Cells
Cluster of differentiation (CD)8+ regulatory T (Treg) cells were,
historically, the first identified cell subset with a suppressive po-
tential in 1972.1However, the lack of a uniquemarker to iden-
tify suppressor Tcells, the lack of evidence of an I-J gene within
the major histocompatibility complex (MHC) region to govern
the suppressor T-cell function, the lack of evidence of any I-J
restricted—or not restricted—suppressor factors, and the difficul-
ties to identify functional genes encoding for an antigen-specific
TCR contributed to the end of CD8+ Treg cell studies for years.2

In contrast, CD4+ Treg cells were defined in 1995 with
solid markers and have been shown to be heterogeneous.3

It has been 20 years now that CD8+ Treg cells have been
resurrected.4 Characteristics of CD8+ Treg cells are still con-
troversial and reproducibility of previously published results
by multiple laboratories will be key to reach a proper under-
standing and consensus. In this review, we will focus on

recent advances on CD8+ Treg cells and evidences of a role
for CD8+ Treg cells in tolerance in both solid organ trans-
plantation and graft versus host disease (GVHD) and their
potential for clinical trials.

Transcription Factors and Cell Membrane Markers
CD8+ Treg cells have a heterogeneous phenotype, as it is

also the case for CD4+ Treg cells which are predominantly
defined as Foxp3+ although other subsets of CD4+ Treg cells
Foxp3− do exist, such as Tr1 and Th3 Treg cells. The hetero-
geneity of CD8+ Treg cell phenotype probably has not only in
part biological basis but it also arises from the use in many
studies of small panels of markers by the different groups that
have studied CD8+ Treg cells. Additionally, it is possible that
differences in phenotype among different species likely hide
similarities within this heterogeneity. Table 1 summarizes
the phenotype of CD8+ Treg cells involved in solid organ
transplantation and GVHD in mice, rats, and humans since
2010 but many other publications describe models before
this date.

Foxp3 regulates several key genes implicated in CD4+ Treg
cell function.37 In mice with Foxp3 reporter genes, as well as
using anti-Foxp3 antibodies, steady-state CD4+ T cells are
the predominant cell type that express Foxp3, although ex-
pression is also observed in CD8+ T cells.38 Using antibodies,
natural Foxp3+CD8+ Treg cells have also been described by
several groups both in rats25 and humans.27-29,34,36 Like-
wise, transgenic Foxp3-green fluorescent protein (GFP) rats
not only show expression of Foxp3 predominantly in CD4+

cells but also in CD8+ T cells and in higher proportion than
that in mice (30% of Foxp3+ cells are 30% of Foxp3+ cells
are CD8+ in rat vs 1-10% in mice)(manuscript in preparation).
In mice, rats, and humans, Foxp3 is expressed in induced
CD4+ and CD8+ Treg cells in a variety of situations.38 There-
fore, after transplantation and treatment with tolerogenic
strategies, it is logical that many studies describe CD8+ Treg
cells as Foxp3+-induced Treg cells (Table 1). Nevertheless,
demethylation of Treg cell–specific demethylated region se-
quences of the Foxp3 gene is higher in natural versus induced
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CD4+ Treg cells,39 and this was also the case in human-induced
alloreactive CD8+CD45RClow/− Treg cells as compared with
CD8+CD45RChigh non–Treg cells.36 At the same time, and as
for CD4+ Treg cells, Foxp3−CD8+ Treg cells have been de-
scribed in all species analyzed and in many pathophysiologi-
cal situations, such as cancer, infectious disease, autoimmunity
as well as organ transplantation and GVHD (Table 1). In
conclusion, for CD8+ Treg cells as for CD4+ Treg cells, Foxp3
is an important marker of a subset of CD8+ Treg cells that
needs to be analyzed in any new transplantation tolerance
model but its absence does not preclude the existence of CD8+

Treg cells. Helios is a transcription factor that has been
described as predominantly expressed by thymus-derived
CD4+Foxp3+ Treg cells but not in peripherally induced CD4+

Treg cells40 although this finding has been questioned.41

Helios controls at least some regulatory functions and sur-
vival in both CD4+ and CD8+ Treg cells.42,43 CD8+ Treg
cells in mouse GVHD models were Helios−8,10 (Table 1).

As for effector cells, CD4+ and CD8+ Treg cells have been
divided into naive, central memory, and effector memory
subpopulations.36,44 Several of the transplantation models
show a phenotype of CD8+ Treg cells as effector memory
cells CD62L−, CD122−, CD28−7,9,15,27,31-33,35,36 or central
memory CD44high chemokine (C-C motif ) receptor (CCR)
7+CD62L+,11,34,36 but others describe more naive CD122+

and/or CD28+ CD8+ Treg cells5,10,12,16,18,19 (Table 1). As far
as for the CD45 isoforms as markers of naive or differentiated
cells, it has been traditionally accepted that RA+RO− cells
are naive, whereas RA−RO+ are memory, but it has also
been shown that CD45RA+ cells may arise from RA− after
stimulation and thus the expression of RA depends on the
elapse time since the last antigen activation.45 For human
CD4+Foxp3+ Treg cells, there are 2 populations, CD45RA+ or
RA−, with different regulatory and proliferation potential.46,47

Human CD8+Foxp3+ Treg cells can also be divided in 2
populations of CD45RA+ or CD45RA− cells,36 but their
suppressive role has not been analyzed. CD45RB is expressed
by all human CD4+ and CD8+ Treg cells.36 Finally, the
CD45RClow/− fraction of T cells includes CD4+ Foxp3+

and CD8+ Foxp3+ Treg cells in rat and human models of
transplantation or GVHD, whereas effector cells or their
precursors reside in the CD45RChigh fraction.21,25,36,48-50

In several transplantationmodels, CD8+ Treg cells have been
shown to express markers of exhaustion, such as lymphocyte-
activation gene 3 (LAG3), PD-1, cytotoxic T-lymphocyte–
associated antigen 4 (CTLA-4), and glucocorticoid-induced tumor
necrosis factor receptor (TNFR)-related (GITR)5,8,10,15,17,19,27-29

(Table 1), but that can also be activation markers, exhaustion
being defined by several other characteristics.51

In the future, the use in mouse, rat, and human cells of
large panels of antibodies directed against intracellular and
cell membrane molecules using new high-density techniques,
such as mass cytometry or new cytofluorimetry technologies,
as well as single cell transcriptomic analysis, would allow to
better define common or different subsets that would then
need to be confirmed in suppressive assays.

Mechanisms of Action

CD8+ Treg Cells Induce Tolerogenic Antigen-presenting
Cells Through cell Membrane Molecule Interactions

Several studies support a role for CTLA-4 in CD8+ Treg
cell suppressive function (Figure 1). For example, clonallyLA
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expanded HLA-restricted Foxp3+CD8+ Treg cells were
dependent on CTLA-4 expression to suppress effector T-cell
responses in vitro.52 Moreover, preincubation of CD8hi

Treg cells with anti-CTLA-4 blocking monoclonal antibody
(mAb) abolished the protection of humanized mice from acute
GVHD induced by PBMC injection.29 Mechanisms of
action of CTLA-4 were previously deciphered in studies
focused on CD4+ Treg cells. Wing et al53 highlighted that in-
teraction of CTLA-4 with B7 molecules expressed on
DCs decreases expression of costimulatory molecules,
leading to weak antigen presentation to effector T cells.
CTLA-4/CD80 interaction also promotes formation of
Treg cell immune synapses, Treg cell activation, and
Foxp3 expression.54-56 Furthermore, CTLA-4/B7 interaction
promotes the expression of the immunoregulatory molecule
indoleamine 2,3-dioxygenase (IDO) in DCs, which impairs
effector T-cell proliferation through deprivation of tryptophan
and generation of proapoptotic metabolites57 and conversion
of naive T cells into Treg cells,58 and IDO has also been
described to generate CTLA-4+ CD8+ Treg cells.28 In contrast,
although the role of LAG3 in CD4+ Treg cell suppressive
function has been well described using blocking mAb and

deficient animals,59 and although LAG3 is expressed on
CD8+ Treg cell subsets,60 its role in CD8+ Treg cell function
requires further investigation. Indeed, LAG3 blockade did
not abrogate CD8+CTLA-4+Foxp3+ plasmacytoid dendritic
cell (pDC)-induced Treg cell–mediated suppression,28 but a
compensatory upregulation of other checkpoint pathways
should be considered.61 Nevertheless, transfer of LAG3-
deficient CD4+ T cells, but not LAG3-deficient CD8+ T cells,
exacerbated the GVHD, suggesting a preferential role for
LAG3 in CD4+ Treg cells in this model.62

Suciu-Foca's team63,64 showed the major role of the inhib-
itory receptors immunoglobulin-like transcript (ILT)3 (un-
known ligand) and ILT4 (ligand MHC-I) expressed by DCs
in suppressive activity exerted by CD8+CD28− Treg cells on
CD4+ T-cell responses in vitro, by blocking these molecules
in a coculture assay.Moreover, they reported that CD8+CD28−

T cells from heart transplanted patients in quiescence inhibited
CD40L-triggered upregulation of CD86 on donor antigen-
presenting cells (APCs) in contrast to Treg cells from
rejecting patients.63 Indeed, CD8+CD28−Treg cells can up-
regulate the expression of ILT3 and ILT4 on APCs that in-
duce a downregulation of costimulatory (CD80/CD86)

FIGURE 1. Schematic illustrating described mechanisms of action of CD8+ Treg cells in transplantation.
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and adhesion (CD54/CD58) molecules, therefore rendering
them tolerogenic.63,65 Reciprocally, ILT3-Fc soluble form
confers immunosuppressive properties to CD8+ Tcells.31,66

CD8+Foxp3+ Treg cells have a higher expression of GITR
than Foxp3− cells,67 and GITR is exclusively expressed in
thymic CD25+, but not in CD25− CD8+Foxp3+ T cells.68

To investigate the role of GITR in Treg cell function, the au-
thors used a blocking mAb that did not abrogate the suppres-
sive effect of CD8+Foxp3+ Treg cells on effector T cell
proliferation in vitro.68 However, the role of GITR for mouse
CD4+ Treg cell interaction with APCs was highlighted using
agonist mAb,69 and this approach has not yet been tested with
CD8+ Treg cells. We sorted human CD8+CD45RClow nTreg
cells based onGITR expression and observed that GITR+ Treg
cells were more efficient thanGITR− cells to suppress Teff pro-
liferation stimulated by allogeneic APCs in vitro. Our results
suggest a role for GITR to interact with allogeneic APCs.36

PD-1 is expressed not only by exhausted Tcells but also by
activated CD4+ and CD8+ T cells, including Treg cells.70

PD-1was shown to be not only amarker to distinguish mem-
ory (PD-1−) from CD8+CD122+PD-1+ Treg cells but also
blocking PD-1 abrogated suppression on Teff proliferation
in vitro.5 Indeed, Dai et al5 showed that PD-1/PD-L1 inter-
action between Treg cells and APCs is required for interleukin
(IL)-10 production and suppression. CD8+CD122+PD-1+ acted
through FasL expression and induced T-cell apoptosis in a Fas/
FasL and IL-10–dependentmanner in vitro and in a skin trans-
plantation model. Administration of IL-15 in vivo was shown
to expand adoptively transferred CD122+PD-1+ CD8+ Treg
cells in vivo.19 In addition, PD-L1 has a pivotal role in the de-
velopment, maintenance, and motility of CD4+ Treg cells and
PD-L1 enhances and sustains Foxp3 expression and Treg cell
suppressive function.54,71 The use of agonistic anti-PD-1 anti-
bodies or of PD-L1-Fc in transplantation could induce tolerance.

CD8+ Treg Cells Can Induce Suppression Through
Extracellular Mechanisms

Several ILs have been shown important in CD8+ Treg cell
suppressive properties (Figure 1). IL-10 plays a major regula-
tory role on inflammatory responses. In mice, IL-10 is involved
in both CD4+ and CD8+ Treg cell suppressive activity and is re-
sponsible for the higher suppressive function of CD8+CD122+

Treg cells than CD4+ Treg cells, concomitantly with IL-10 ex-
pression levels reported in these cells.12 IL-10 is expressed af-
ter direct recognition of conventional Tcells by CD8+CD122+

Treg cells throughMHC class I/ αβTCR interaction72 and de-
pendently on CD28 and PD-1 signaling.5 Their human coun-
terpart CD8+CXCR3+ Treg cells showed similar properties.73

Mesenchymal stromal cells have been shown to enhance the
regulatory function of CD8+CD28−Treg cells by upregulating
the expression of IL-10 and FasL.32 IL-10 is also important
for intestinal CD8αα T cells to maintain gut integrity.74 Con-
cerning CD8+CD45RClow Treg cells, we have reported a
higher expression of IL-10 in rat CD8+CD45RClow Treg cells
as compared with CD8+CD45RChigh Teff,21 and more re-
cently, we demonstrated a higher suppressive activity in
IL-10–expressing human CD8+CD45RClow Treg cells.36

IL-10 has been described to act through inhibition of CD28
tyrosine phosphorylation and signaling pathway75 and seems
important for Foxp3 expression because mice lacking IL-10
failed to maintain Foxp3 expression in CD4+ Treg cells
resulting in impaired regulatory activity.76

We recently reported a role for a newly identified cytokine,
IL-34, in both CD4+ and CD8+ Treg cell function.24 Only
CD8+ and CD4+ Treg cells express IL-34. By blocking IL-34
with antibodies in a coculture suppressive assay, we showed
that IL-34 is involved in the suppressive activity of CD40Ig-
induced CD8+CD45RClow Treg cells in a rat transplan-
tation heart model.21,24,77 Similarly, blocking of IL-34
partially abrogated suppression mediated by both CD4+

and CD8+CD45RClow human Treg cells.24,77 We also dem-
onstrated IL-34 capacity to induce CD4+ andCD8+ Treg cells
as a feedback loop, in vivo and in vitro, through monocyte
polarization toward M2-type macrophages to protect allo-
graft from acute and chronic rejections.24,77,78

In contrast to IL-34–specific expression by Foxp3+ Treg
cells, expression of IL-35 is not restricted to regulatory
cells,79 but blocking of IL-35 with mAb reversed antigen-
specific CD8+CTLA-4+ Treg cell–mediated suppression in a
trans-vivo DTHassay.80 The exact role of IL-35 in transplan-
tation has not yet been investigated.

IFN-γ immunoregulatory properties have been now com-
monly accepted, produced by both CD4+ and CD8+ Treg
cells and acting on APCs and endothelial cells.81,82 Several
studies support evidences for a role of IFN-γ in CD8+ Treg
cell suppressive function. Like IL-10, IFN-γ is required for
CD8+CD127−CD25hiFoxP3hi-induced Treg cells to sup-
press.83 IFNy is also required for the generation and the func-
tion of CD8+ Treg cells induced by the introduction of
antigens in the immune-privileged anterior chamber of the
eye. Indeed, Ifn-γ −/− mice or mice treated with anti-IFN-γ
mAb before injection of an alloantigen failed to develop ante-
rior chamber-associated immune deviation.84 IFN-γ can in-
duce other immunoregulatory mediators to control immune
responses. For example, CD8+CD11c+ induced Treg cells
control autoimmune diseases through secretion of IFN-γ that
induces IDO expression in DCs.85 In addition, our group has
shown that CD40Ig-induced CD8+CD45RClow Treg cells se-
crete IFN-γ to induce IDO expression in pDCs and endothelial
cells.21,22 IFN-γ can also promote fibrinogen-like protein 2
(FGL2) expression by these Treg cells as a feedback loop.22,23

Similarly, TGF-β is important for the suppression medi-
ated by CD8+CD122+ Treg cells. Indeed, blocking TGF-β1
reverted suppression exerted by CD8+CD122+ Treg cells on
T-cell proliferation in an APC-independent mechanism.86

Moreover, TGF-β participates in the regulation of the enceph-
alitogenic CD4+ Tcells by CD8+CD122+ Treg cells, as well as
IL-10 and IFN-γ.87 Similar experiments of blocking TGF-β in
coculture assays have been used to prove its involvement in
suppressive function of peptide-specific CD8+ iTreg cells,88

human corneal endothelial cell-induced Foxp3+CD25+CD8+

Treg cells89 and CD8+CD45RClow human Treg cells,36 but not
of CD8+CD45RA+CCR7+Foxp3+ Treg cells.90 Glycoprotein-A
repetitions predominant protein a transmembrane protein
that binds latent-TGF-β1 form on cell surface to mediate
TGF-β1 release was also detected at mRNA level in
CD8+CD25+ Treg cells,91 but its exact role in CD8+ Treg cell
function and in transplantation has not yet been examined.
The immunoregulatory properties of the soluble form of
FGL2 have been first highlighted in CD4+ Treg cells.92-95

FGL2 expression was then reported in memory CD8+ Tcells,96

in CD8αα Treg cells,97 and we demonstrated its involvement
in rat CD40Ig-induced CD8+CD45RClow Treg cell func-
tion.22,23 FGL2 links to FcγRIIB receptor to inhibit bone
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marrow–derived dendritic cell maturation, induce B-cell apo-
ptosis98 or generate regulatory B (Breg) cells.23

Recruitment of regulatory cells on the inflammatory site is
key to control immune responses. For example, by secreting
CCL4, CD8+CD25+Foxp3+LAG3+ Treg cells may recruit
other T cells, DCs, and macrophages expressing CCR5 on
the inflammatory site.60 In addition, CCL4 has immunosup-
pressive properties, and it is crucial for these Treg cells to sup-
press since blocking Abs reverted most of inhibition of Teff
proliferation in vitro.60 Finally, the expression of CXCR3
by human CD8+ Treg cells and mice CD8+CD122+ Treg cells
suggests their own recruitment along gradient of monokines
induced by IFN-γ (CXCL9, 10, and 11) toward the inflam-
matory site to control the immune reaction.73 Similarly, the
expression of CCR8 by thymic CD8+CD25+Foxp3+ Treg
cells could have a migratory role.68

Treg Cells Can Selectively Kill Teff Through
Cytolysis Mechanisms

Perforin is used by some CD8+ Treg cells to induce cytolysis
of target cells (Figure 1). For example, Qa1-restricted CD8+

Treg cell suppressive function was dependent on perforin ex-
pression as Perf−/− Treg cells could not inhibit proliferation
of effector T cells in vitro.99,100 Fas/FasL interaction, associ-
ated to autoimmune induced cell death,101 is another mecha-
nism used by CD8+ Treg cells to suppress immune responses.
CD8+CD122+PD-1+ Treg cells induce apoptosis through this
mechanism because Fasl−/−Treg cells or Fas−/− Teff did not
result in target cell apoptosis.19,102 The Fas-mediated cy-
tolysis can be processed in an Ag-independent manner by
CD11chighCD8+CD122hi Treg cells, acting dependently
on CD11c ligation,103 on activated but not on resting
CD4+ T cells.4 CD8+CD28− Treg cells in drug free kidney
transplanted tolerant patients express high levels of perforin
and granzyme A but no degranulation was observed in con-
tact with donorHLA-I antigens in vitro.104 In addition, these Treg
cells are less sensitive to perforin and granzyme A–mediated apo-
ptosis.104 Similar observations were done regarding Fas/
FasL apoptosis induction. Murine CD8+ iTreg cells (induced
byTGF-β-treatedAPCs) act directly onCD4+Teff cells through
a Fas-mediated mechanism and not on APCs presenting the
antigen,105 andmurine Ag-activated CD8+ Tcells are also re-
sistant to Fas-mediated apoptosis.4

RegardingotherCD8+Treg cell subsets, neitherCD8+CD103+

nor CD8+CD45RClow Treg cells use cytolysis mecha-
nisms to suppress.106,107 Our group confirmed that human
CD8+CD45RClow nTreg cells, as for rat CD8+CD45RClow,
did not induce apoptosis of allogeneic APCs or allostimulated
autologous Teff.21,36

Metabolic Disruption
Although IL-2 is required for Teff to proliferate and de-

velop immune responses, CD8+ Treg cells are reported to
act on IL-2 availability and sensitivity (Figure 1). First, high
expression of subunits of IL-2R, CD122 and/or CD25, al-
lows CD8+ Treg cells to impoverish Teff environment by con-
sumption while expanding themselves. CD122 is largely
expressed by human CD8+ Tcells, including both CD8+ Treg
cells and memory CD8+ T cells.108 Expression of CD122 or
CD25 confers CD8+ Treg cells a high susceptibility to low
dose of IL-2.108,109 Indeed, expansion of CD8+Foxp3+

Treg cells can be induced by IL-2/IL-2 mAb complexes110

or induction of signal transducer and activator of transcrip-
tion 5 (STAT5), which is involved in IL-2R signaling.111 In
addition, CD8+CD28− Treg cells are reported to decrease
the production of IL-2 by Teff in response to APCs.112 Finally,
CD8+CD25+ Treg cells are able to downregulate IL-2R ex-
pression by Teff and therefore to inhibit their proliferation.113

In the context of allogeneic response, CD8+CD45RClow

Treg cells upregulate CD25 expression both in rat and in human
but addition of exogenous IL-2 does not seem to revert Treg cell–
mediated suppression on alloimmune responses in vitro.25,36

CD38 is a nucleotide metabolizing ectoenzyme that is able
to not only transform nicotinamide adenosine diphosphate
ribose into ADPribose and cADP-ribose, but also hydrolyze
cADP-ribose into ADPribose.114 CD4+ Treg cells and Breg
cells express CD38.115 Although the exact role of the enzyme
activity of CD38 on immune responses is not clear, genetic
inactivation or anti-CD38 mAb inhibits several immune re-
sponses.114 CD8+ Treg cells have been defined as being
CD38high and human CD8+CD45RClow Treg cells express
CD38 although the functional role of CD38 in suppression
and in transplantation was not described.36,116

Regulation of T Follicular Helper Cells and
Germinal B Cells

Evidences for a role of CD8+ Treg cells in the regulation of
T follicular helper (Tfh) cells have beenmore recently provided
by different studies (Figure 1). In a model of tumor growth in
Qa-1 mutant mice, impaired Qa-1-restricted CD8+ Treg cells
could not suppress, tumor growth was reduced, and this re-
duction was associated with enhanced expansion of Tfh cells
and germinal B cells.117 However, these mice did not generate
excessive Tfh cell response, and alloantibody production and
tolerance induction by anti-CD45RBmAbwas not impaired.16

This regulation of Tfh cells by CD8+ Treg cells has been at-
tributed to STAT4.118 In Stat−/−Ldlr−/− insulin resistant mice,
CD8+ Treg cells suppressed Tfh cell and germinal B-cell de-
velopment upon immunization or adaptive transfer.118

The Role of Alloantigen Recognition in CD8+Treg
Cell–mediated Suppression

Several studies demonstrated that antigen-specific CD4+

Treg cells have a higher suppressive activity compared to poly-
clonal Treg cells.119-122 Based on cell therapy processes, the
effect induced by 1.5�108 to 1 � 109 allogeneic CD4+ Treg
cells would be equivalent to the effect induced by 5�109

polyclonal Treg cells123 with lower nonspecific drawbacks.
Similarly, studies support the importance of antigen spec-

ificity for CD8+ Treg cells to efficiently suppress through di-
rect lysis of target cells or through inhibition of APC
maturation. For example, the recognition of Qa1-peptide
on activated mice CD4+ T cells by the TCR of CD8+ Treg
cells is determinant for CD8+ Treg cells to induce IFN-
mediated direct lysis of effector memory CD4+ T cells.20

Also, specific allorecognition of donor DCs is required for
noncytotoxic CD8+Foxp3+ Treg cells to induce suppression
through inhibition of DCmaturation.7 Furthermore, confer-
ring antigen specificity to murine polyclonal CD8+25+ Treg
cells by using OVA-specific exosomal MHC complexes in-
creased the inhibition of effector T-cell responses through di-
rect perforin-mediated apoptosis induction and prevention
of DC maturation.100 Finally, antigen-specific CD8+ Treg
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cells can induce regulatory properties in alloreactive T cells
in vivo based on their capacity of infectious tolerance.124 Al-
together, interactionwithMHC-peptide onAPCor on Tcells
is important for CD8+ Treg cells to induce tolerance.

One obvious advantage of CD8+ Treg cells compared with
CD4+ Treg cells is the persistence of donor MHC-I presenta-
tion over time. Indeed, the short life of donor APCs for direct
alloreactive CD4+ Treg cells activation and low occurrence of
indirect alloreactive Treg cells are limitations for CD4+ Treg
cells cell therapy. By contrast, direct presentation to alloreactive
CD8+ Treg cells by MHC-I+ graft cells is still effective at long
term. Moreover, our group has shown that indirect presenta-
tion of donor peptide to rat CD8+ Treg cells is even more effi-
cient than direct recognition of donor cells to inhibit effector
T-cell alloresponse.25

Therefore, therapeutic strategies converge to expand
antigen-specific CD8+ Treg cells. Indeed, in vivo administra-
tion of donorMHC or donor-derived peptide to the recipient
before the graft expanded allospecific preexisting CD8+ Treg
cells that protected islet graft from rejection in mice and in-
duced donor specific cardiac allograft tolerance in rat.25 Proof
of concept in a humanized mice model of GVHD showed that
ex vivo expansion of naive precursors CD8hi Treg cells with
donor APCs allowed to control GVHD through a CTLA4-
dependent mechanism.29 Finally, our preliminary results also
showed that lower dose of donor specific HLA-A2 chimeric
antigen receptor (CAR)+ CD8+ Treg cells than polyclonal ones
would be sufficient to delay skin graft rejection in a humanized
mice model (unpublished data).

Synergistic Roles of CD4+ and CD8+ Treg Cells
to Suppress

We and others have demonstrated that CD4+ and CD8+

Treg cells synergize to induce tolerance in murine models.
Heinrichs et al14 demonstrated the beneficial effect of com-
bining CD4+ and CD8+ Treg cells in a model of GVHD/
GVL in mice. Indeed, CD4+ and CD8+ Treg cells were not
able to control GVHD development separately but were effi-
cient when combined.Moreover, addition of CD8+ Treg cells
allowed preserving the GVL effect that was abrogated by
CD4+ Treg cells alone. Similarly, in a model of tolerance to
the cardiac allograft in rat induced by IL-34 treatment, we
observed that adaptive transfer of IL-34–induced CD4+ or
CD8+ Treg cells in a newly grafted recipient induced tolerance
in 50% animals whereas transfer of total T cells protected all
animals from graft rejection, suggesting a synergy between
the CD4+ and CD8+ Treg cell populations.24

Suppression mechanisms used by CD4+ and CD8+ Treg
cells are complementary to act on target cell panel. Whereas
naive effector T cell response can be suppressed by CD4+

Treg cells, memory T cells responses cannot.125 Long et al20

demonstrated that addition of CD8+ Treg cells allowed to ef-
ficiently suppress memory effector T-cell responses. In addi-
tion, it is likely that the diversity of immunoregulatory
cytokines produced by CD4+ and CD8+ Treg cells combined
to diverse contact-mediated tolerogenic APCs, and anergic
effector T cells create a propitious milieu for the recruit-
ment and conversion of other regulatory cell types as an
“infectious” tolerance.124 For example, TGF-beta secreted by
CD8+ Treg cells is used for CD4+ Treg cell expansion in cell
therapy processes,126 IL-10 is important for Foxp3 expres-
sion in CD4+ Treg cells,76 and we have shown that rat

CD8+CD45RClow Treg cells secrete IL-34 that induce
Mreg, inducing in turn CD4+ and CD8+ Treg cells,24 as
well as FGL-2 that induce Breg cells,23 and IFNγ that in-
duce IDO expression in tolerogenic DCs.21 Finally, the
presence of alloantigen required for Treg cell generation and
persistence is different and complementary regarding the life
span and allogenicity of donor MHC-I and MHC-II.

Therefore, therapeutic strategies aiming to induce both
CD4+ andCD8+ Treg cells are promising. Indeed, we recently
demonstrated the induction of tolerance to the allograft in a
rat model and in a model of GVHD in humanized mice as a
proof of concept by a short-term depletion of CD45RChigh

effector T cells promoting the long-term expansion of both
CD4+ and CD8+ Treg cells in vivo.26 In addition, we have
shown that IL-34 treatment of the recipient induced simulta-
neously CD4+CD25+ and CD8+CD45RClow Treg cells in a
rat cardiac allograftmodel, and that both Treg cells were able
of infectious tolerancewhen adaptively transferred in a newly
untreated and grafted recipient.24

CD8+ Treg Cells, a Promising Therapeutic
in Transplantation

Clinical trials with Treg cells or Treg cells inducing regi-
mens have started in the last years,127,128 but to date, there
are no clinical trials embarking CD8+ Treg cells despite their
potential that they have either alone or associated to other
regulatory populations. Indeed, the possibility of synergy be-
tween CD4+ and CD8+ Treg cells has been shown14 and
should be considered to be appliedmore widely, because each
cell type could use different but complementary mechanisms
of action and most of all MHC-I– or MHC-II–dependent ac-
tivation for CD8+ and CD4+ Treg cells, respectively, is an
important difference.

Ex Vivo Expanded CD8+ Treg Cells and Cell Therapy
CD8+ Treg cells have demonstrated a great capacity to ex-

pand ex vivo to be used to suppress alloimmune responses
through adaptive cell transfer. In a major mismatch and
haploidentical murine model of hematopoietic stem cell
transplantation, it has been demonstrated that alloreactive
expanded CD4+ Treg cells efficiently prevented the GVHD
but abrogated the GVL effect, and alloreactive expanded
CD8+ Treg cells less efficiently prevented the GVHD but
spared the GVL effect. They showed that a combination of
both CD4+ and CD8+ Treg cells efficiently achieved the opti-
mal goal in bone marrow transplanted mice by preventing
the GVHD and preserving the GVL effect.14

Expansion of naive human CCR7+CD8+ Treg cells in the
presence of low-dose anti-CD3 and IL-15 upregulates expres-
sion of Foxp3, CD25, and CD103 and their ability to sup-
press in a contact-dependent manner CD4+ effector T-cell
response.90 Naive CD8+ T cells expanded in the presence of
donor bone marrow–derived dendritic cells, TGF-β1, retinoic
acid, and IL-2 gave rise to antigen-specific CD25+Foxp3+CD8+

Treg cells able to inhibit fullMHC-mismatch skin allograft in
mice in a contact-dependent manner.7 In a model of antigen-
specific TCR transgenic mice and islet allograft, bystander
central memory, and not effector memory, CD8+ Treg cells
were potent suppressors through TGF-β upon adaptive cell
transfer.129 Adaptive transfer of CD122+PD-1+CD8+ Treg
cells in the presence of low-dose IL-15 resulted in significant
expansion and protection of skin allograft in mice dependent
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on their expression of Fas ligand, IL-10 production, and
PD-1 signaling was required.19,130 Moreover, CD122+PD-
1+CD8+ Treg cells were more efficient at inhibiting allograft
rejection of pancreatic islets than CD4+CD25+ Treg cells in
the presence of IL-15.12 Human CD25+Foxp3+TNFR2+PD-
L1+CD8+ Treg cells expanded 1 week ex vivo with anti-
CD3/28 beads and IL-2 or TGF-β1 have strong protective
properties in xeno-GVHDmodel in immunodeficient mice.131

Human CD8+CD45RClow Treg cells could be efficiently ex-
panded using high-dose IL-2 and IL-15 combination to a
subset expressing high level of Foxp3, IL-34, IL-10, TGF-β,
and intermediate level of IFNγ that subsequently efficiently
inhibited human skin graft rejection and GVHD in human-
ized NOD scid gamma (NSG) mice in vivo upon adaptive
cell transfer.36

This beneficial effect of the cytokines ex vivo suggests also
that they could be beneficial in vivo if given to the recipient
concomitantly to the Treg cell therapy (cf below). It is possi-
ble, as for CD4+ Treg cells, that different subsets have differ-
ent proliferation capacity and that naive CD45RA+CD8+

Treg cells expand more than memory CD45RA−CD8+ Treg
cells, but this has not yet been investigated. In addition, the
recent description of the existence of stem cell memory
CD4+ Treg cells with renewal capacity leads to the question
of the existence of such subset within CD8+ Treg cells that
could give a tremendous advantage for cell therapy in the
context of organ transplantation, but this also requires
further investigations.

In Vivo CD8+ Treg Cells Activation and Expansion
There are now numerous animal models that demonstrate

that CD8+ Treg cells can be induced in vivo using different
strategies and the key role of those induced CD8+ Treg cells
in controlling transplant rejection or autoimmune reactions
of the host.21,24,25,132,133 Indeed, CD8+CD28low Treg cells
in mice are naturally present in the periphery, emerging from
the thymus, under the influence of AIRE, the Autoimmune
regulator.134,135 Thus, most of these strategies aim to tip
the balance between effector and regulatory cells. Indeed,
for example, it has been shown that some strategies targeting
effector T cells, with more or less efficacy, leave a niche for
regulatory Treg cell homeostatic proliferation to suppress
the immune reactions.26,136-138

We have shown that in a model of cardiac allograft trans-
plantation in the rat, CD8+ Treg cells have antigen-specific
properties and are expanded in number and function in the
presence of a donor allograft and a tolerogenic regimen, such
as CD40Ig, a molecule blocking costimulatory interaction
and activation.21 Using CD8+ Treg cells properties, such as
antigen specificity (peptides derived fromMHC class II mol-
ecules of the donor were identified) or suppressive cytokine
acting on allogeneic macrophages (IL-34), we have success-
fully expanded CD8+ Treg cells in number and function
(and with a specificity to the donor) and have been able to in-
hibit allograft rejection and induce tolerance (no lesions of
chronic rejection which in such a stringent model is very dif-
ficult to induce) for several generations upon adaptive CD8+

Treg cell transfer to newly grafted recipients.24,25

We recently demonstrated that approaches targeting the
CD45 molecule using monoclonal depleting antibodies in rat
model of transplantation can deplete CD4+CD45RChigh and

CD8+CD45RChigh that have been shown to trigger organ rejec-
tion while sparing CD4+CD45RClow and CD8+CD45RClow

Treg cells.21,26,49,107,139,140 Although the anti-CD45RB treat-
ment has been shown to increase CD122+CD8+ anti-Qa1Treg
cells splenic percentage and proliferation in mice, transplant
tolerance induction by anti-CD45RB was not dependent on
CD8+ Treg cells because Qa-1-deficient recipients remain sus-
ceptible to the treatment.16 Anti-CD3OKT3mAbwas shown
to preventGVHDafter in vivo administrationwithin 48 hours
or in vitro incubation of the cells before injection in humanized
mice.141ModifiedOKT3-y1(Ala-Ala2) antibodies administra-
tion in human patients resulted in CD8+CD25+ Treg cell ex-
pansion (of Foxp3+ phenotype),142 but this was not observed
in mice.137 Anti-CD3 mAb was also shown to induce in vitro
CD8+Foxp3+ Treg cells from PBMCs of patients with rheuma-
toid arthritis, supported by p38 phosphorylation and by
monocytes expressing TNFα and CD86.143 Immunization
of mice with antigen and anti–4-1BB (CD137) mAb generated
antigen-specificCD8+Treg cells efficiently inhibitingCD4+ effec-
tor T-cell responses in an IFNγ and TGFβ-dependent manner.88

Douillard et al144 showed for the first time that donor-
specific blood transfusion induced donor-specific CD8+ Treg
cells that infiltrated the graft in a rat model of cardiac trans-
plantation tolerance. These cells displayed a predominant
tVbeta18-Dbeta1-Jbeta2.7 TCR rearrangement. Treatment
with a depleting anti-CD8 mAb or anti-TCRVbeta18-Dbeta1-
Jbeta2.7 DNA vaccination resulted in abrogation of allo-
graft tolerance.144,145 Liu et al showed that multiple donor
blood transfusions could indeed induce CD8+ Treg cells ex-
pressing Foxp3 in a different model of allo-incompatibility in
rat.132 CD8+ Treg cells can also be expanded by disease-
relevant peptide-major histocompatibility complexes coated
on nanoparticules to prevent the disease. The group of
Santamaria has shown that the use of nanoparticules coated
with MHC-I loaded with specific peptides induced memory
CD44+CD122+CD8+ Treg cells that inhibited T1D and coli-
tis acting in an IFNγ-, IDO-, and perforin-dependent man-
ner.146,147 This approach could be used with alloantigens to
increase CD8+ Treg cells in transplantation. A single 16
amino acid donor-derived peptide has been shown to induce
heart transplant tolerance in fully incompatible rats when
given during 28 days, starting 7 days before transplantation
without any other treatment.25 adenoassociated virus-mediated
expression of donorMHCmolecule in a model of liver trans-
plantation in mice efficiently promoted the emergence of a
subset of allospecific CD8+ Treg cells.15

Low-dose IL-2 administration in mice and human dem-
onstrated a high sensitivity of CD25+Foxp3+CD8+ Treg
cells to IL-2 for expansion and activation and suggested
some similarities to CD4+ Treg cells.109 In nonhuman pri-
mates, low-dose IL-2 administration led to expansion of
CD45RA−Foxp3highCD8+Treg cells.148 Inmice, Foxp3+CD8+

Treg cells were massively and specifically expanded by
rapamycin and IL-2 antibody complexes to prevent GVHD.10

In contrast, Hirakawa et al149 showed that low-dose IL-2 ad-
ministration did not induce CD8+Foxp3+ Treg cells but rather
subsets of CD4+ Treg cells and NK cells. Costimulation block-
adewith CTLA4Ig in amicemodel of lung transplantation ac-
ceptance was associated and dependent on central memory
CD44highCD62LhighCCR7+CD8+ Treg cells infiltrating the
graft and producing IFNγ.11 Dexamethasone, a potent de-
pleting treatment, efficiently expanded CD8+ Treg cells while
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decreasing CTLs and conferred a protective role for CD8+

cells in trombocytopenia.150

CD8+ Treg cells can also be induced in vitro or in vivo
under the influence of other cell subsets, such as dendritic
cells. In a primate renal allograft model, prolonged allo-
graft survival was associated with antigen-specific eome-
soderminlowCTLA4highCD8+ memory Treg cells that were
induced by CTLA4Ig blockade and regulatory DC infusion.133

Plasmacytoid dendritic cells have significant regulatory poten-
tial and CD40L-activated pDCs or tumor-associated pDCs
have been shown to induce IL-10 producing CD8+ Treg cells
in human.151,152 Inmice, treatmentwith autologous tolerogenic
DCs and anti-CD3 in a model of skin transplantation pro-
longed graft survival, and this was associated with the accumu-
lation in draining lymph nodes of CD8+CD11c+ T cells and
transfer of these cells prolonged graft survival in naive recipi-
ents.13 Human monocyte-derived DCs reduced GVHD in an
immune humanized mouse model of GVHD, and this was me-
diated by the induction of CD8highCD103+Foxp3+ Treg cells.34

Some Immunosuppressive Agents “do no harm”to
CD8+ Treg Cells

Immunosuppressive agents have made possible and con-
siderably enhanced allograft survival in human in the short-
medium term. Unfortunately, in the long term, they have
modestly improved the survival of the graft and the devel-
opment of chronic rejection lesions, and they also lead to
dramatic secondary effects for the patient. Next to that,
regulatory cells used for cell therapy in transplantation will
have to be combined with these immunosuppressive agents
before they become a clinical reality. Zhang et al153 have
shown that rapamycin improved Foxp3 stability in murine-
induced CD8+ Treg cells (to a lesser extent than in CD4+ Treg
cells). Rapamycin has also been shown to increase the num-
bers of CD103+CD8+ Treg cells using human PBMCs; in
contrast, cyclosporine A had no effect and prednisolone
was deleterious.154 In kidney transplant patients treated with
rapamycin, CD28−CD8+ Treg cells were increased in the
blood 2 years after transplantation.155 In mice, Foxp3+CD8+

Treg cells were inhibited by cyclosporine while they were
massively and specifically expanded by rapamycin and IL-2
antibody complexes to prevent GVHD.10 In vitro expansion
in the presence of rapamycin has been shown beneficial for
CD4+CD25+Foxp3+ Treg cells,156 and we recently showed
that it improves both expansion fold and suppression capac-
ity of human CD8+CD45RClow Treg cells.36 In contrast, we
observed a strikingly deleterious effect ofmycophenolatemo-
fetil, a selective inhibitor of the de novo pathway for purine
synthesis used exclusively by T and B cells, which inhibited
the expansion of the CD8+CD45RClow Treg cells and de-
creased suppression. Other immunosuppressors that we
tested (methylprednisolone, tacrolimus, cyclosporine A) did
not alter CD8+ Treg cell function and expansion.

Future Directions and Challenges
More work is needed to identify specific surface marker

(s) that will help isolate and study CD8+ Treg cells as well
as to understand the role of Foxp3 for these cells. In the quest
of a good marker, the application of single cell technologies
to understand T cell heterogeneity will be of high value. As
suggested by the literature, it is probable that there are, as it
is the case for CD4+ Treg cells, Foxp3+ and Foxp3− CD8+

regulatory cells. The origin and stability of CD8+ Treg cells
is also a current debate, and we must take into consideration
the potential plasticity of those cells, as shown by the fact that
several protocols have been suggested tomaintain CD8+ Treg
cell phenotype and increase suppressive potential and num-
ber. Recently, the world of cell therapy was shaken by the tre-
mendous results obtained in cancer with the CAR CD4+ and
CD8+ T effector cells. These CARs have the advantages of
redirecting the specificity of the cells to the target (in passing,
boosting their capacity) thus focusing their number and ac-
tivity where they should. Very recently, 3 groups showed that
anti–HLA-A2–specific CAR-CD4+ Treg cells in xeno-GVHD
and skin transplantation in immunodeficient mice human-
ized with human PBMCs displayed increased suppressive ca-
pacity compared to control CD4+ Treg cells.157-159 To date,
there are no publications describing CAR-CD8+ Treg cells.
This new technology opens several questions and opportuni-
ties. What is the potential of CAR-CD8+ Treg cells? Will
allograft-redirected CAR-CD8+ Treg cells last long? As in
the cancer field,160 could allograft-redirected CAR-CD8+

Treg cells synergize with CAR-CD4+ Treg cells? The use of
such tools could bypass the need for driving antigen specific-
ity in ex vivo expansion protocol to boost the efficacy of the
CD8+ Treg cells25,161; however, we may still be too early to
fully understand whether CAR stimulation will results in
similar Treg cell activation and behavior as compared with
Treg cells stimulated with donor antigens122 and high-density
single-cell technologies will be also of great interest here.
The differences in their mechanisms of action and potential
synergy of CD8+ and CD4+ Treg cells are another intriguing
possibility that will need to be fully explored in the future.
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